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SUMMARY

Closed lunar orbits are envisaged in lunar mission programs. The

study described herein was undertaken to obtain an appreciation of the

relevant fuel consumption requirements. The retrograde impulses nec-

essary for establishing the orbits were assumed to occur at the point

of closest approach of the main earth-moon trajectory; this point,

designated as the arrival position, was restricted to a lunar altitude

of 5,000 nautical miles or less. The orientation of the arrival posi-

tion vector relevant to any coplanar radius vector is not constrained,

however, and similarly the scalar value of the arrival velocity is
unrestrained.

Since the arrival altitude is restricted to 5,000 nautical miles

or less, the perturbing accelerations of the earth and sun are suffi-

ciently small that the vehicle and moon essentially comprise an isolated

two-body system; this is discussed in the report.

Retrograde velocities are determined for any required pericynthion

position. If the pericynthion orientation requirement is relaxed then

a smaller retrograde velocity is in some cases possible. A comparison

between minimum retrograde velocities and retrograde velocities neces-

sary for stipulated pericynthion positions is given. Arrival veloci-

ties are correlated with feasible earth departure conditions.

The equations developed for determining retrograde velocities for

desired pericynthion positions are considered useful for estimating

essential data for the preliminary planning of lunar missions. Some

graphical representation is included herein for immediate familiariza-

tionwith possible conditions.

INTRODUCTION

The study described in this report was initiated by the desire for

a preliminary assessment of various problems associated with local lunar
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orbits as envisaged in lunar mission programs. Since it was knownthat
the lunar gravitational field would be domim_ntduring low-altitude
orbits and that two-body solutions would be _tpplicable, it was decided
to use a closed-solutlon approach. Whensatellites of a dominating
gravitational field are studied, velocities relative to the nonrotating
coordinate system, with origin at the gravity source, are treated as
inertial in order that Newtonian laws mayapply. As an example, planet
velocities relative to the sun are considered inertial and yet the sun
is thought to be moving in space. For a lunar satellite, a perfectly
elliptical orbit cannot be achieved due to the movementsof the sun,
earth, and moonrelative to the vehicle; however, for low-altitude lunar
orbits, the lunar gravitational field is dominant; hence, near elliptical
orbits may occur. Stability checks of the elliptlcity were examined
from the output of a digital program employing the Encke technique of
integration with origin at the mooncenter. This was considered to be
sufficiently accurate and the checks confirm_d the validity of the
approach taken.

Contained within this report is a method for determining the retro-
grade velocity necessary for establishing orbits with specific charac-
teristics. It is anticipated that the plane of the vehicle's lunar
arrival velocity will, by guidance impulses, nearly coincide with the
plane of the desired resultant orbit; hence_ one constraint of this
stud_ was that both the arrival velocity and resultant orbit be coplanar.
This report also indicates the correlation oJ' arrival velocity with
specified earth departure conditions by mean_of a restricted three-
bod_mathematical model.

It is possible in manycases to reduce the magnitude of the retro-
grade impulse if the restrictions on the pericynthion orientation are
relaxed. Therefore, a method is presented wLereby the minimumretro-
grade impulse can be determined for an orbit with a specified peri-
cynthion radius with no constraint on orientetion. The methods of
determining minimumretrograde velocities an_ retrograde velocities
for required response are thought to be usefkl in that they point the
way to a comprehensivequantitative survey program for assessing fuel
requirements for lunar orbits.
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SYMBOLS

a

C

D

semimaJor axis of orbit, ft

Jacobian constant, ft2/sec 2

distance from center of earth tc center of moon# ft
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G

go

h

I

M

Me

Mm

m

r

ra

rbp

rep

rp

Re

Rm

t

V

VA

Naperlan logarithm base

universal gravitational constant, ft4-1b/sec 4

gravitational acceleration at earth's surface, ft/sec 2

altitude, nautical miles

altitude at apocynthion, nautical miles

altitude at pericynthion, nautical miles

specific impulse of fuel, sec

mass of earth plus mass of moon, slugs

mass of earth, slugs

mass of moon, slugs

mass of lunar vehicle, slugs

distance from moon center to vehicle position, ft

apocynthion distance from moon center, ft

distance from barycenter to vehicle position, ft

distance from earth center to vehicle position, ft

pericynthion distance from moon center, ft

distance from earth center to barycenter, ft

distance from moon center to barycenter, ft

time, sec

velocity referred to the rotating coordinate system, origin

the barycenter, ft/sec

arrival velocity referred to the nonrotating coordinate

system, origin the moon center, ft/sec
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Ve

Vi

Vm

Vo

Voa

Vop

VR

X,Y,Z

Xe,Ye,Ze

Xi ,Yi ,Zi

Xm,Ym,Zm

i
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velocity referred to the nonrotating coordinate system,

origin the earth center, ft/sec

velocity referred to the nonrotating coordinate system,

origin the barycenter, ft/sec

velocity referred to the nonrotating coordinate system,

origin the moon center, ft/sec

orbit velocity referred to the nonrotating coordinate

system, origin the moon center, ft/sec

orbit apocynthion velocity referred to the nonrotating

coordinate system_ origin the moon center, ft/sec

orbit pericynthion velocity referred to the nonrotating

coordinate system, origin the moon center, ft/sec

retrograde velocity, ft/sec

rotating coordinates_ origin the barycenter

nonrotating coordinates, origin _he earth center

nonrotating coordinates, origin _he barycenter

nonrotating coordinates, origin _he moon center, Xm and

Ym in the plane of the vehicle's orbit

angle between vehicle velocity v_ctor and local horizontal,

deg

ratio of fuel mass to gross mass at commencement of

thrusting for entry into local lunar orbit

overall ratio of fuel mass to gross mass required for both

entry into and exit from the local lunar orbit at the

same point of orbit

eccentricity

angle between r and rp at instant of retroimpulse

burnout, deg



M e
i - _ -

M

included angle between VA and VR, deg

rotational velocity of earth-moon system, radians/sec

A dot over a symbol indicates differentiation with respect to time.

DISCUSSION

Arrival Velocity

In lunar mission programs, it is assumed that one of the mission's

main objectives will be to make a close survey of the moon's terrain.

For a detailed survey, this requires the vehicle to establish an orbit

about the moon which will necessitate the application of a retrograde

impulse. It is assumed for this study that the impulse will be applied

at the instant of closest approach to the moon when the vehicle's velocity

vector is normal to the extension of the moon's radius. A conception of

the complete mission is shown in figure i.

The vehicle's lunar arrival velocity and position can be correlated

with the earth insertion velocity and position by reference to a restric-

ted three-body mathematical model. In this model the moon and earth are

considered to rotate with constant radii and constant angular velocity
about their common center of mass. The earth and moon are considered

as point masses and the vehicle's mass is regarded as infinitely small

in comparison. Further information concerning the characteristics of

the restricted three-body mathematical model is found in reference i.

The restricted three-body equations of motion as given in the

rotating coordinate system with the barycenter as origin are

rep3 r3

(1)

= c_2Y - 2_ - GM(I - _)Y G_Y

rep} r3

(2)



rep3 r3

where (X - XI) is the distance along the X coordinate from the earth

center to the particle and (X - X2) is the distance along this coordinate

from the moon center to the particle.

By writing

i _2(X2 + y2)+ GM(I- F) + GM_
W(X,Y,Z) = _ rep r

(4)

S
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then the equations of motion become

: _W + 2coi" (5)

8x

7 - _w 2_ (6)
8Y

£ sw (7)

By multiplying equations (5) to (7) by 2X, 2Y, and 2Z, respectively,

adding, and integrating, Jacobi's integral s obtained as

i_ + __2+ _2= _(x 2 + y2) __2GN( - #) 2GM,u
+ _- c (8)

r._p r

or

2(1 - _)oM + ;_oM v2 (9)
C = _2rbp2 +

rep r

where rbp is in the earth-moon plane.
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If the earth departure velocity and position are known, the integra-

tion constant C can be determined. Once C is determined, it is

possible to calculate the scalar value of the lunar arrival velocity for

any given arrival position. The transformation of the velocity in the

rotating coordinate system, origin the barycenter, to the velocity in

the nonrotating coordinate system, origin the moon center, is

Vm =_+ X (io)

The relationship between the velocities in the different coordinate

systems is illustrated in figure 2. A comparison between earth departure

velocities and lunar arrival velocities is shown in figure 3. The cor-

relation between arrival velocity and earth departure velocity is shown

for the condition of minimum earth-moon distance. The vehicle's arrival

velocity is in the -_ × direction.

In acquiring a quantitative feel for lunar arrival velocities as

a function of earth departure velocities for a given earth departure

position, it is natural to think in terms of V e rather than V. A

knowledge of the value of V does not immediately give the value of Ve;

however, for the departure position given in figure 3, it is known that

7 will be in the range of -2° to 25 ° in the case of coplanar trajectories.

Consequently, if the rotational rate of the earth-moon system and the dis-

tance between the earth center and barycenter are known, then, for a given

value of V, the associated range of V e may be determined. Through

the Jacobian relationship_ the corresponding value of V at the arrival

position, point of closest approach to the moon, may be established.

Since V at the arrival position is perpendicular to the polar position

vector from the moon center, VA referred to a nonrotating axis system

(origin the moon center) may be immediately determined.

It may be shown that for a given value of C and arrival position

vector 3 regardless of the orientation of the position vector 3 the lunar

arrival velocity is approximately constant. This assertion must be

qualified by restricting the altitude to the range considered in this

study. The justification for the approximation is given in appendix B.

Determination of Retrograde Velocities

This section contains a method for determining instantaneous retro-

grade velocities within certain constrained conditions. For the method

described herein, the plane of action is defined as the plane containing

the moon center and the arrival velocity vector. The retrograde impulses

will be applied in this plane and, therefore 3 the resulting orbits will
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be in this plane. Also, since the retrograde impulse is to be initiated

at the point of closest approach to the moon, then the arrival velocity

vector will be normal to the position vector.

The method for determining an orbit with a required pericynthion

radius and orientation is now presented; the two-body relationships are

developed in appendix A. The following sketch depicts the vehicle's

arrival at the vicinity of the moon where the plane of arrival is denoted

as the XmY m plane:

Ym

8

/
/

S
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where @ _ 180, measured clockwise or counterclockwise from the r vector.

By the law of cosines

where

and

VR 2 = VA 2 + Vo 2 - 2VoV A cos (ii)

rpVop
cos _ - (12)

rV o

(13)
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Substitution of equations (12) and (13). into equation (Ii) yields

VR 2 : GMm(2a- r) + VA 2 2VArpVop
ar r

(14)

It is seen from the relationships in appendix A that

S

i

0
a _-

rp
2-- i - cos e

r

(15)

It also follows from the relationships in appendix A that

Vop =

1/2

Substitution of equation (15) into equation (13) yields

2
Vo

rp [p_l rpr cos

Now, let

rp
_=_
r

(16)

(17)

(18a)

GMm _ A2

_rp

( 18b )

i - cos e

i
i - _ cos e

--B (i8c)
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2GMm(
- iI =-K (18d)

Substitution of identities (18a) to (18d) into equation (17) yields

the following equation:

Vo2 = A2B + K (19)

Equation (ii) may now be written as

S
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0

vR2 = vA2 + A2B + K - 2VA_AI_1/2 (2o)

Equation (20) is the general equation which determines the retrograde

velocity for the required conditions.

Transforming equation (12) yields

7 = +-arc cos\_-j\V7 _
(21)

By determining 7 then _ can be calculated from the law of

sines. Thus,

: arc sin_ sin 71
(22)

Equations (20) and (22) determine the required retrograde velocity

vector. However, it should be noted that the r_sultant trajectory could

represent any type of conic orbit depending on the arrival conditions

and the required characteristics of the resulting trajectory. It is

assumed that an elliptical orbit is desired; ho_ever_ it does not nec-

essarily follow that the retrograde impulse wilL yield an elliptical

orbit. The classification of the conic orbit c_n be found by determining

the eccentricity where for an elliptical orbit 0 < ¢ < i_ for a parabolic

orbit ¢ = i, and for a hyperbolic orbit c > i.

Although it is not envisaged that it will ,ever be desirable to

arrive at a certain pericynthion position on a hyperbolic trajectory,
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it is possible to determine the necessary retrograde impulse vector
which will accomplish this. If equation (20) is modified to

S
i
0

VR2 = VA2 + A2B + K + 2VA_AB I/2 (23)

then solution of this equation (23) will yield the necessary velocity.

The orbit velocity vector in this case will be opposite in direction

to that which would be determined if equation (20) were utilized.

In order to obtain an insight into the quantitative values of

retrograde velocity, refer to figure 4 and table i. Figure 4 shows the

retrograde velocities necessary for various combinations of arrival and

required conditions and the orbit reference table defines the orbits

established as a result of these retrograde impulses. As an example,

suppose it is desired to establish an orbit with a pericynthion altitude

of i00 nautical miles with the pericynthion radius oriented 150 ° from

the insertion radius. Assume that the vehicle arrives at an altitude

of 1,000 nautical miles with a velocity of 6,500 ft/sec. Reference to

figure 4 shows that this will require a retrograde impulse of

3,360 ft/sec. Reference to table i shows that the established orbit

will have an apocynthion altitude of 1,128.6 nautical miles, an apocyn-

thion velocity of 3,031.5 ft/sec, a pericynthion velocity of

6,036.9 ft/sec, and the time required for one complete orbit will be

3.8 hours.

It has been determined that the preceding equations will yield the

retrograde impulse for any specified values of pericynthion radius and

orientation. However, it is possible in many cases to reach these peri-

cynthion altitudes with smaller retrograde velocities if the restric-

tions on the orientation of pericynthion are relaxed. The determination

of minimum retrograde velocity for a given scalar value of pericynthion

altitude is given in appendix C.

A comparison between minimum retrograde velocities and retrograde

velocities for constrained conditions is shown in figure 5. For the

construction of this figure, the vehicle is assumed to arrive at an

altitude of 1,000 nautical miles with an arrival velocity of 7,000 ft/sec.

Figure 5(a) shows rp/r, where r is the arrival radius, plotted against

e which will yield the minimum retrograde velocity. Figure 5(b) shows

rp/r plotted against the required minimum retrograde velocity and the

comparison (dashed) curve shows the retrograde velocities which yield

a pericynthion orientation of 150 °. Figure 5(c) shows rp/r plotted

against the resultant orbit apocynthion radius for the case where the

retrograde impulse is a minimum and for the comparison case. It can be

seen that over a large range of rn/r, the minimum retrograde impulse
eI
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_ill offer some fuel savings without influencing the resultant orbits

significantly. In the range of rp/r where the fuel savings are con-

siderable, however, the resultant orbits have the following undesirable

features: large apocynthion radii, large pericynthion velocities, and

large orbit periods.

In order to improve the quantitative feel for retrograde velocities

as a function of free-coast earth-moon trajectories, retrograde velocities

for e = 180 ° are plotted against arrival velocity and altitude for a

fixed earth-moon distance and earth departure position vector in fig-

ure 6; in sequence (figs. 6(a) to 6(d)) the value of the departure veloc-

ity V is varied. On the assumption that the departure angle 7 is

between -2° and 25 ° the normally referred to earth departure velocity

V e may be quickly determined within the limit_ of ±3_ ft/sec and in

some cases direct reference may be made to figlre 3.

S
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Fuel Requirements

The fuel required for instantaneous retrograde impulse for estab-

lishing lunar orbits can be calculated from th_ equation

5 = 1 - e-vR/Ig° (24)

where 5 is the ratio of the fuel mass at co_nencement of burning to

the gross mass. Shown in figure 7 are the ratios of fuel mass to gross

mass necessary for establishing the orbits sho_n in figure 6. The fuel-

consumption values as shown are considered to be absolute minimums since

the impulses are assumed to be instantaneous. Fuel-consumption values

for corresponding finite impulses, however, will differ little from

the given values. In all cases where thrust i_ acting against a

resolved weight component, there is a loss in ._fficiency, and this to

a small degree would be the case with correspozlding impulses of finite
duration.

As an example of the use of this graph, omsider a lunar vehicle

with an earth-surface weight of lO,000 pounds ._ontaining a fuel of

250 seconds specific impulse. From the graph Zt will be noted that,

within the conditions considered, the earth-su_-face weight of fuel

required for inserting the vehicle at a lunar altitude of 5,000 nautical

miles into an orbit with a pericynthion altitude of lO0 nautical miles

is 3,200 pounds.
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In order to obtain the total fuel requirement for orbit entry and

exit, the following considerations are taken into account. The retro-

grade velocity required to insert into the orbit is assumed to equal

the posigrade velocity for exit. This assumption is made since the

velocity requirements relative to the center of the moon of the major

earth-moon trajectory will not have substantially changed after a

restricted number of lunar orbits. The total fuel requirement is found

from the equation

--5= 1 - e-2VR/Ig° (25)

or

: 28 - 52 (26)

B

where 5 is the ratio of total fuel mass to gross mass required for

orbit entry and exit. Shown in figure 8 are the ratios of total fuel

mass to gross mass necessary for orbit entry and exit for the orbits

shown in figure 6. As an example of the use of figure 8, consider a

lunar vehicle with an earth-surface weight of lOgO00 pounds containing

a fuel of 250 seconds specific impulse. From figure 8(c) it can be

deduced that the earth-surface weight of fuel required for both entry

and exit, at an arrival altitude of 5,000 nautical miles for an orbit

with a pericynthion altitude of lO0 nautical miles_ is approximately

5,400 pounds.

Orbit Stability

The simplest and possibly the best method of considering the sta-

bility of the vehicle's orbit about the moon is to consider the vehicle

as a satellite of the moon where the following effects are considered

to be the major perturbation effects:

(1) the earth's gravity field

(2) the sun's gravity field

(3) the moon's potential distribution

(4) the lunar llbrations

By stability it is implied that successive orbits have repetitive

characteristics.
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A brief analysis of the individual gravitational effects of the

earth, sun, and moon show the possibility of a highly stable orbit.

The order of magnitude of the gravitational effects of the earth, sun,

and moon on the vehicle are shown in the following table:

Gravitational effects, expressed _n ft/sec 23 for -

Zero lunar altitude Lunar altitude of 5,000 nautical miles

Moon 5.31 0.13

Sun .02 .02

Earth .01 .01

S

i

0

If for a short duration there is insignific_nt difference between

the effects on the moon and the effects on the v._hicle due to the

gravity fields of the earth and sun, then the moon and vehicle will

tend to behave as a two-body system with a resu_:_ant stable orbit.

Should the apocynthion altitude of the vehicle's orbit never be greater

than 5,000 nautical miles, then the scalar accelerations of the vehicle
and moon due to the sun never have a greater ratio than 1.000147 or the

inverse. The directional difference in the acce[eration vectors is

negligible since the sun is approximately 80,764,000 nautical miles

away. The corresponding ratio due to the earth is never greater than

1.0647 or the inverse and the directional differ_nce is small. Viewed

in this manner, the sun's gravitational effect is very small. The moon

and vehicle acceleration vectorial difference du_ to the earth appears

to be more significant, but due to the oscillato:y nature of the dif-

ference (since it is periodic with the vehicle's orbit), the effect is

small over a restricted number of orbits.

Other perturbation effects of interest are the librations of the

moon about its center of gravity. The apparent Librations as viewed

from earth are of no concern in this study. There is a small real

libration in longitude due to the eccentricity of the moon's orbit

about the barycenter but the period is a month, %nd hence this libra-

tion does not present a problem. If any high-frequency llbrations

exist, they are thought to be insignificantly small.

The main changes in orbit characteristics with time are anticipated

to be changes in the inclination of the orbit anl regression of the nodes

relative to the lunar equator.

Several stability checks have been conducted by a comprehensive

simulation incorporated in a digital mathematical model which includes

earth, sun, and lunar potential distribution effects.
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This model is particularly attractive in that the origin of integra-
tion is the moon for the conditions considered and the round-off errors

are those involved in the integration of perturbations from reference

ellipses. The checks added confidence to the preceding discussion of

stability.

CONCIJJSIONS

S
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In a preliminary study of retrograde velocities required for

insertion into lunar low-altitude orbits, the following conclusions
were reached:

i. At low lunar altitudes, say less than 5,000 nautical miles, the

lunar vehicle in free-coast conditions will essentially behave as a

satellite of the moon and, hence, the trajectory will be conical with

the center of the moon mass as a focal point. Depending on the velocity

imparted by the retrograde impulse, the trajectory will be elliptic,

parabolic, or hyperbolic. Elliptical trajectories are of interest in

that closed orbits about the moon are required for survey purposes.

2. A simple thrusting logic may be introduced for obtaining a

required pericynthion position, the only requirement being that the

insertion velocity is that which would be yielded by the classical two-

body solution for the required conditions.

3. The lunar arrival velocity increases with increase in earth

insertion velocity and this entails heavier fuel expenditure for inser-

tion into a local lunar orbit; however, there is the possibility that

the trajectory associated with a higher earth insertion velocity will

require less fuel expenditure for guidance before the arrival phase.

4. For a given arrival altitude, the nearer the required orbit is

to a circular orbit, the lower the required retrograde velocity. Further-

more for a given pericynthion altitude, the nearer the associated orbit

is to circular, the smaller the pericynthion velocity.

5. For an elliptical orbit with pericynthion altitude and orienta-

tion stipulated, there is a unique retrograde velocity. If the restric-

tion on the orientation of the pericynthion is relaxed, then in many

cases it is possible to determine a smaller retrograde impulse which

will yield the desired pericynthion altitude.
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6. There are cases when the resultant pericynthion of a minimum

retrograde impulse does not occur directly op;osite the point of appli-

cation. Utilization of a minimum retrograde impulse in these circum-

stances may produce an orbit with an excessiv6 apocynthion altitude,

pericynthion velocity, and period. It is possible to minimize these

adverse features, at the expense of fuel, by orienting the pericynthion

away from the point of minimum retrograde impulse to a point where
the orbit characteristics become more desirable.

Space Task Group,

National Aeronautics and Space Administr_tion,

Langley Field, Va., June 12, 1961.

S

i

0



2Y

17

APPENDIX A

TW0-BODY EQUATIONS

In order to maintain continuity in the body of the text, transposes

of well-known two-body relationships are immediately used. This appendix

is included to indicate the derivation of these relationships.

The differential equations of motion are

and

[dPr r(de_21 GMmm

 ,dTJj =- r2
(At)

m d (r2 de)dt _ = 0 (A2)

From these equations and a knowledge of conic geometry, the following

equations can be evolved. The general conic expression for the semilatus
rectum is

p = r(l + c cos e) (A3)

and when r = rp, then e = 0 which yields

p = rp(1 + c) (A4)

The expression for the angle 7 which is the angle between the

velocity vector V o and the normal to the vector

tion of equation (A2)

rpV°p (AS)
cos T = rV °

r is from integra-

The expression for the semlmaJor axis which is evolved from equa-

tion (A3) is
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a _

P

i- e2
(A6)

Substitution of the values of

yield

p and e from equations (A3) and (A4)

(rp )rp 7-- cos e
a = (A7)

rp2-- i- cos 8
r

For a hyperbola since e > i it can be seen from equation (A6) that the

numerical value of a will be negative. The orbit velocity is

(AS)

Substituting equation (A7) into equation (A_) yields

-r_°_oo rpVo_:r_[r_l_-_ 0
(A9)

The pericynthion velocity is

Substitution for a from equation (A7) in equation (AI0) yields

(AIO)

=O m[rIfVop2

p(_- c(s8

(All)
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APPENDIX B

ARRIVAL VELOCITY APPROXIMATIONS

S
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This appendix is presented to show that for a given value of C

the arrival velocity is almost entirely dependent on lunar altitude,

within the limits of this study. This is succeeded by a derivation of

an approximation of the variation of arrival velocity with lunar altitude.

Arrival Velocity at Constant Lunar Altitude

The Jacobian velocity relationship is as follows:

2(1 - _)aM 2_GMV 2 =_2rbp2 + +--- C (B1)
rep r

For convenience, equation (BI) is rewritten so that the terms independent

of the orientation of r appear on the left-hand side as

- -_+ c = _2_p2 + 2(1 - _)_M (B2)V 2
r rep

Upon utilizing the law of cosines, the following equation is evolved:

+ rep _ = _2 + + _ Rm)_

+
2(1- _)ca

+

(B3)
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Since

and

+r21 >>> 2(Rm + Re)(X - Rm)

Therefore,

S
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2_p2 + 2(1 - _)aM"rep
+ 2(1- .)aM

(% + _)2 + 1211/2

This allows equation (BI) to be modified to a close approximation for

the range of altitudes studied as follows:

V2 _2(Rm2 + r2) +
2(i- _)aM +_- c

-,1/2 r

(Rm + Re) + 12"

(B4)

Consequently, it can be seen from approximati}n (B4) that if r is

constant, then the orientation of r will nos affect the value of V,

Vm = V + X where _ is a constant vector and r has a constant

scalar value. If trajectories in the earth-m)on plane are being con-

sidered, then Vm = V ± _r where _r is a c)nstant.

Variation of Arrival Velocity With lunar Altitude

The trend of the arrival velocity with i_crease of altitude above

the lunar surface may be more clearly underst)od by the following con-

siderations. Substitution of equation (B3) iato equation (BI) yields
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v2= 2 mlX

+ 2_GM C
r

2(i -_)GM

[(Re + Rm) 2 + 2(Re + Rm)(X - Rm)]

112

(BS)

S
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Differentiation of this equation with respect to r yields

_V2 _ 2_2r _ 2(i - _)(GM)r _ .2_GM

_r 3/2

[(Re + Rm) 2 + r2 + 2(Re + Rm)(X - Rm)]

however,

2_GM
2c_2r _ 2(i - _)(GM)r <<<

[(Re + Rm) 2 + r2 + 2( Re + Rm)( x - ,)]3/2 r2

J

Therefore, it is possible to reduce equation (]36) to the approximation

(_)

2_V _ -3.5 x I014 ft/sec 2 (B7)

_r r2

This expression gives a good approximation for the trend of the arrival

velocity with altitude. Although this approximation applies for a

velocity V, which is referred to the rotating axis system with origin

at the barycenter, it is now shown that with little loss of accuracy V

may be regarded as VA. Given that

VA 2 : V 2 + 2_rV + co2r2 (BS)
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then,

8r 8r
(B9)

which yields

2
@#A @#2

_r _r

± _ur @#2 + 2_2r + 2_oV

V 8r
(BZO)

S

1

0

and upon collecting terms

_A_r-_r_(__-V)+_ +_> (BII)

By inserting a relevant range of values into the equation it is found

that

and

Therefore, the following approximation is acc_,ptable:

@#A 2 @#2 -3.9 x i014
______ ft/sec 2

_r _r r 2

(B_2)
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APPENDIX C

DERIVATION OF THE MINIMUM RETROGRADE VELOCITY TO

OBTAIN A GIVEN PERICYNTHION SCALAR VALUE

Upon referring to the following equation

VR2 = VA2 + A2B + K - 2VA_AB1/2 (cx)

and the identities (18a), (18b), and (18d), it is seen that the quan-

tities A, K, and _ are independent of 8; therefore, differentia-

tion of equation (CI) with respect to 9 yields

_vs2- A(A - v.¢s-1/2] _B

and differentiation of identity (18c) yields

(ce)

i - i)sin

A necessary condition for minimum retrograde velocity is that

and it is known that A / O; therefore,

A -VA_-I/2)

cos 9)2

= 0

8VR 2
- O,

8e

(c4)
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Suppose, tentatively, that for equation C4) to hold,

therefore_

A - VA_B -I/2 : 0

Substitution of equation (CSa) into identity (18c) yields

(c5)

(CSa)

cos e (c6)

Equation (C4) has two boundary condition3 9 = 0° and @ = 180 ° .

When r = rp, then @ = 0 by definition of t_e two-body orbit and this

is the unique value of 8 to be considered. By reference to equa-

tion (C4), it is seen that 8 = 180 ° is an alternative solution to

_VR2 (i - _Isin 9

_8
: o (c7)

and

and

Two conditions are now stipulated.

_R 2

_e

_Y_rR2
- 0 let VR = VR2.

_e

- 0 let V R = VRI. For condition _ where

For _ondition I where 9 = 180 °

18o>:lej>o

The following analysis is to prove that when VR2 exists, it is a

2 VR2 2minimum. Tentatively assume that VRI => in which case the
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following equation is evolved from equation (CI):

A2B1 - 2VA_ABI I/2 _ A2B2 - 2VA_AB2 I/2 (c8)

S

i

0

It is convenient to add 2VA_ABI I/2 - A2B2 to both sides.

allows inequality (C8) to be rewritten as

A2(BII/2 + B21/2)(BII/2 - B21/2)=_ 2VA_A(BI I/2 - B2 I/2)

Thi s

(cSa)

By definition, B :
i - cos e

i
i - _ cos 8

, therefore_

For condition 2 equation (C6) yields

(C9)

-i < (CI0)

By introducing the value of

(ClO) simplifies to

from equation (C5a), inequality

B2 >--
2

i
i + -

(ClZa)
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and

From equation (C9) and inequality (Cllb) it fo__lows that

BII/2_ _i/2 < o

(Cllb)

(cme)

Inequality (C8a), which is the condition for VRI 2 => VR22 which

in turn implies that VR2 is a minimum, is no_-rdivided by

(Bll/2 - B21/B)A 2, a negative quantity which reverses the inequality,

and hence

Bll/2+ _i/2 _ 2VA_ (C_3)
- A

From equation (CSa), both sides of which _re positive, it is seen
that

2vA¢- 2_ 1/2 (el4)
A

Therefore, substitution of equation (C14) into inequality (C13) yields

B11/2+ _i/2 _ 2_i/2 (c15)

Subtraction of 2B2 I/2 from both sides o_ inequality (C15) yields

BIz/2_ _i/2 _ o (ci6)
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but from inequality (C12), it is known that this is true; therefore,

when VR2 exists, it is a minimum. It must be noted that VR2 is a

minimum for a conic trajectory. For the trajectory to be elliptical,

two-bod_v orbital equations yield equation (15) and for elliptical con-

ditions to exist

S

i

0

or

r_
2 _ - i - cos e > 0

r

rp
2 m _ i > cos 0 (C17)

r

rp
Hence, when VR2 exists and 2 _- - i > cos e, then VR2

retrograde velocity for an elliptical orbit.

is the minimum

In summation_ if VR2 does exist, it is a minimum and, of necessity,

_VR2 0 and -i _< < I
-- ___ •

When _ = i, e = 0 is the unique value which satisfies equa-

tion (C4).

If VR2 does not exist and _ # i, then VRI is a minimum. If

VRI is a minimum, 8 180 ° and_ of necessity, _VR2= - O; also implied
Be

is that 2 rp _ 1 > cos e, which is the condition for ellipticity.
r

The method for determining the minimum retrograde velocity for a

given set of conditions is outlined as follows:
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Step l:

Determine from the following equation if VR2 does exist:

B

e : cos -I i - /\IV--_I2-

If there is a solution to equation (C18), then VR2 does exist and the

determined value of e will yield the minimum retrograde impulse.

Should the equation have no legitimate soluti_n_ then VR2 does not

exist and, therefore_ e = 180 °, which is the value of e for VRI _

will yield the minimum retrograde impulse.

(Cl8)

Step 2:

The eccentricity of the orbit should now be determined. By using

the value of e as found from equation (C18), the eccentricity can be

determined from

S

i

0

B
c :-- i (C19)

Step 3:

The minimum retrograde velocity for an elliptical orbit can be

ascertained by using the determined value of 8 in equation (20) which

is

vR 2 = VA 2 + A2B + K - 2VA_B I/2

If the resultant orbit is not elliptical, the minimum retrograde velocity

can be determined from equation (23) which is

VR 2 = VA 2 + A2B + K + 2VA_B 1/2
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TABLE 1

ORBIT REFERENCE

[ e=leo° j e=15o° i _=18o°

Arrival al_ _ude, 1,000 nautical miles

I

For hp = 50 nautical miles,

ha, nautical miles ....

Voa, ft/sec .......

Vop , ft/sec .......

Period, hr .......

For hp = IOO nautical miles,

ha, nautical miles ....

Voa I ft/sec .......

Vop , ft/sec .......

Period, hr .......

For hp - 200 nautical miles,

ha, nautical miles ....

Voa , ft/sec .......

Vop, ft/sec .......

Period, hr .......

1,914.O

2,263.8

6,535.5

5.3

1,788.O

2,397.1

6,296.8

1,593.0

2,638.5

9,868.9

4.9

1,143.6

2,9 _3.8

6,2 _4.9

3.8

1,128.6

3,031.9

6,036.9

3.8

1,102.9

3,136.7

%661.8

4.0

1,0OO.0

3,146.1

6,171.7

5-5

1,000.O

3,197.9

5,970.9

3.6

1,000.0

3,293.2

5,6O8.7

3.8

Arrival _itibude, 3,000 nautical mile_

For hp = 90 nautical miles,

ha, nautical miles ....

Voa , ft/sec .......

Vop , ft/see .......

Period, hr .......

For hp = i00 nautical miles,

ha, nautical miles ....

Voa , ft/sec .......

Vop , ft/sec .......

Period, hr .......

For hp = 200 nautical miles,

ha, nautical miles ....

Voa, ft/sec .......

Vop , ft/see .......

Period, hr .......

a844,339- 7

8.8

7,578.9

17,330.2

a56,562.3

132.3

7,333.1

315.3

a20,963.9

357.9

6,889.2

77.9

4,C r4.3

1,366.0

6,9}1.0

[0.3

3,_8.O

1,4 16.6

6,7._4.4

t0.2

5,_ ,5.1

i,_ [0.8

6,_ 50.8

iO.l

Arrival altitude, 3,000 nautical miles

3,000 .O

1,701.0

6,780.4

7-7

3,000.0

1,734.6

6,_.3

7.8

3,0OO.0

1,798.3

6,223.8

8.0

For hp = 30 nautical miles,

ha, nautical miles ....

Voa , ft/sec .......

Vop, ft/sec .......

Period, hr .......

For hp = i00 nautical miles,

ha, nautical miles ....

Vows ft/sec .......

Vop, ft/sec .......

Period, hr .......

For hp = 200 nautical miles,

ha, nautical miles ....

Vna, ft/sec .......

Vop , ft/sec .......

Period, hr .......

Hyperbolic

Trajectory

Hyperbolic

Trajectory

Hyperbolic

Trajectory

8,_ 53.9

q57.9

7,;99.1

-_3.1

8,C _.8

{ 99.3

7,C )3.4

_-2.3

7,, _ ?8.9

E96.6

6,( _6.5

21.1

%000.0

1,168.2

7,O21.7

12.8

5,000.0

1,193.0

6,826.5

13.0

5,000.0

1,240. I_-

6,h72.8

15.2

aln the solar system the assump%ion of elliptical chare cterlstlcs in these

cases is not valid.

in

I

O
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36.00

35.98

35.96
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35.92

35.90

35.88

35.8E

35.84

35.82

35

3.6 4.0 4.4 4.8 5.2 5.6 6,0 6.4 6.8 7.2 7.6X103

YA' ft/sec

Figure 3.- Variation of earth departure velocity V e with lunar

arrival velocity V A as determined by Jacobian relationship.
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O

I

02.0 2.2 2.4 2.6 2.8

VR , ft/sec

3.0 3.2X103 4 5

(b) V = 35,796 ft/sec.

Figure 6.- Continued.

6 7

VA , ft/sec

9XIO 3



VR, ft/sec

3.6 3.8X_O 3 4

(c) V = 35,885 ft/sec.

Figure 6.- Continued.
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I

VR , ft/sec

(d) V = 39,974 ft/sec.

Figure 6.- Concluded.

9XlO 3
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